结构上的独特之处
从传统的定义来说,弹道导弹就是在发射之后,遵循预先制定好的弹道,以接近抛物线的轨迹飞行的导弹。弹道导弹必有的部件是惯性制导仪(机械惯性陀螺或激光陀螺),它能实时测量导弹的加速度,从而推算出导弹此时的飞行路径,并与预先制定的弹道作比较。如果陀螺仪测量出导弹偏离了预先制定的弹道,弹上相应的控制系统就发出指令,使导弹改变飞行状态,直至与预定的弹道吻合,这也是“弹道导弹”一名的由来。
反舰弹道导弹并不是传统意义上的弹道导弹。很显然,要“反舰”,那么导弹的弹道就不能完全在发射之前就被预定。至少在飞行轨迹的末端,导弹必须具有依据目标的运动状态而临时进行自由机动的能力,只有这样,反舰弹道导弹才能命中在大海中航行的军舰。反舰弹道导弹是一种“非典型”的弹道导弹,从目前国际上对此类导弹形成的共识来看,一般认为,反舰弹道导弹是一种复合弹道导弹,它在弹道的上升段、中段与普通的弹道导弹一般无大的差别,但在弹道的末端,反舰弹道导弹的制导原理、制导系统与飞航式导弹相似。
反舰弹道导弹攻击航母示意图
冷战时期,美国研制的“潘兴”-2中程弹道导弹就是这样的复合弹道导弹。尽管它的打击对象不是军舰,而是大战时苏联陆军设置的前进后勤基地、装甲集群驻屯地,但为了打击这些位置随时可能发生变化的目标,“潘兴”-2 破天荒地在弹道导弹上同时安装了惯性制导、雷达地形匹配末制导两套制导系统。在导弹的上升段与中段,“潘兴”-2 维持抛物线弹道。当进入弹道末端、导弹重入大气层后,“潘兴”-2 的弹头即开始打开减速装置,使弹头的速度逐渐下降,从接近3000 米/ 秒降低到1100 米/ 秒。当弹头的速度降低到已不会引起黑障的时候,弹上的末端地形匹配制导雷达开机,扫描下方陆地,与输入导弹的电子地图进行比对识别。此后,导弹一边在大气层内滑翔,一边使用气动舵面,更精确地修订航迹,直至精确命中目标。
复杂的制导系统和控制系统使得“潘兴”-2 的外观也与其他弹道导弹显得不同。传统的单弹头弹道导弹,其弹头内只有战斗部,因而在导弹重入大气层时,只剩下一个圆锥体扎向地面。而“潘兴”-2 的弹头除了一枚战斗部,还需要安装整流罩、雷达、火控元件和飞行控制系统,因而“潘兴”-2的弹头又尖又长,外表呈流线型。弹头最前端是整流罩,内部装有雷达天线;接着是仪器舱,装有雷达的控制系统、火控元件;接下来才是战斗部。
媒体公布的“东风”-21D 照片中,导弹头部也是又尖又长,这与“潘兴”-2 的外观可谓是异曲同工。不过,从技术发展的角度来说,服役于1985 年的“潘兴”-2,安装的制导雷达体积、重量偏大,在其20 多年之后才出世的“东风”-21D,弹上搭载的雷达在小型化方面应当有巨大的进步,即便是用较小直径的雷达天线,也可能拥有比“潘兴”-2 更远的探测距离和更大角度的探测扇面。甚至“东风”-21D 有可能安装小型简易相控阵雷达,在获得更好的探测精度、探测距离的同时,导弹本身的体积还能进一步缩小。从成本上讲,相控阵雷达的造价比传统机械扫描雷达高,但对于反舰弹道导弹这样一种本身就比较昂贵、所要对付的目标更昂贵的武器来说,换用小型相控阵给全弹成本带来的涨幅,或许也是可以接受的。自从苏联解体之后俄罗斯便不再投入资源发展中导,美国则早早将中程战略打击任务交给了核“战斧”巡航导弹。“东风”-21 导弹研制于上世纪80年代,最初部署在东北及华北地区,用于对苏联远东地区的要点进行威慑。90 年代中期的台海危机之后,“东风”-21 导弹的常规弹头型大量制造,主要部署在东南沿海。从结构上看,“东风”-21 采用二级布局,固体推进剂,火箭发动机、推进剂配方均与“巨浪”-1 潜射弹道导弹相似。“东风”-21 的初期型外观上也与“巨浪”-1 有一定的相似之处。从90 年代起,我国陆续推出“东风”-21 的改进型,其中“东风”-21C 的整体性能已相当先进,该弹采用了末端机动变轨体制以增强突防能力,这为发展“东风”-21D 型反舰弹道导弹奠定了基础。简单地说,“东风”-21C 型导弹在弹头增加了变向机构以及相应的控制系统,“东风”-21D 型导弹则是在“东风”-21C 的基础上,再增加了主动雷达末制导系统以及星- 弹通信系统。