这些与高超音速飞行器领域配套的基础设施的建设,表明着我国早已紧盯高精尖技术前沿,致力于高超音速飞行器的研究。那么,近年来在此领域以WU-14、“神龙”为代表的高超音速的试射实属自然。
在高温段吸热后的燃料裂解成低分子产物,循环到超燃冲压发动机动力系统后更适合工作要求。消耗,利用燃料循环系统作为外壳持续降温的手段。
正是隔热层、耐热结构材料,降低热流,减少热应力、热传送和热冷却等多项措施的全面综合采用,才有热防护问题的解决可能,才有飞行器向高超音速的冲刺。
高超音速飞行器的摩擦热是防御方的克敌之法
脉冲爆震发动机试验装置
高超音速飞行器的摩擦热,于“进攻方”而言的热防护问题外,但对于“防御方”而言这却是可以加以利用的软肋。高超音速飞行器的武器化,将使得传统的地面防空雷达和预警机的探测预警时间极大的被压缩,从对普通高空飞机的约半小时压缩到不超过1分钟。
X-43的高温风洞测试
传统的防空预警网络在高超音速武器面前基本属于形同虚设。高超音速飞行器的红外信号特征却是在随着速度的增高显著增加,这就将会过早的暴露其飞行航迹。2~3马赫的超音速飞行器的雷达散射截面就通常为亚音速方案的10倍以上,在3-5微米的短波长红外区内,其红外信号特征通常为亚音速方案的20-50倍。
那么红外预警这一在弹道导弹防御系统中已经实用化的预警手段,是可以轻易发现高超音速飞行器的。对于高超声速飞行器而言,由于在高层大气中飞行时,与空气剧烈摩擦,会产生大量的热量,导致机体温度急剧升高。