其中4-6马赫叫做亚燃冲压发动机,6马赫以上叫超燃冲压发动机技术,要实现这一关键技术其中最重要的问题包括进气道技术,燃烧室技术和材料技术。
进气道技术要解决的主要问题是要求高超声速进气道能够让发动机可以持续稳定的进气出气,且维持稳定的压力,否则发动机就会变得不可控制甚至突然熄火。
此外因为空气流动时在和发动机交界处流速恒定为0,这就会产生一个阻力,这个交界层叫做附面层,高超音速时,这一阻力效应非常大,要解决这些问题都需要对进气道进行精密设计,研究其三维压缩效应,附面层效应等。

上图为超燃冲压发动机推动的高超音速飞行器飞行时的温度分布图,可以看到其承受了极高的温度,有些表面甚至超过1000度,这给飞机材料带来了极大的考验。
燃烧室主要是燃料和气流混合的场所,要解决的关键问题是在有限的空间(米级)、时间(毫秒级)内和在高速气流(通常是超声速气流)中,实现燃料的喷射、雾化、蒸发、掺混、点火、稳定燃烧,将化学能最大限度地转化为热能,有高的热效率和较小的压力损失,但因为发动机总要逐渐增速。
而在不同的速度下,气流在燃烧室内的速度不同,对于点火等技术的要求也不同,而简单的串联不同的发动机不但增大重量而且并不真的有用,因此在一个发动机内同时实现多种模式燃烧就显得非常关键。

上图为美国NASA研制的高超音速飞行器X-43A,最高速度达9.7马赫,但因为无法解决燃料持久问题,因此试飞了三次均只持续了10秒以下就耗尽燃料,最终被NASA放弃。
一般有两种方法,一是通过精密的计算机调整燃烧位置、燃烧强度(燃烧控制),另一种则是调整燃烧室几何面积,这两种方式都非常难,需要大量的计算和实验。
燃料技术要解决的问题原理很简单,在高超音速气流中点燃燃料且让其稳定燃烧一会儿,这就好比人在12级大风里点燃一根火柴还要让其稳定燃烧一样难,自然普遍航空煤油无法担任这一重任。